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Abstract

In this paper, we propose AFQLite, an end-to-end system
for video querying. AFQL allows users to specify custom
object detection models by passing in the weights for the
model and includes a python package and command line
interface with video display capabilities for fast analytics.
The language is based on SQL and is designed to be intu-
itive for data analysts familiar with SQL, rather than requir-
ing a deep understanding of object detection algorithms. We
present the AFQLite architecture, a case study of AFQLite
performance on a corpus of videos, and discuss extensions
of the system to meet future use cases.

1. Introduction
1.1. Motivation

The amount of video data created and published to the
internet grows rapidly every year. Video analytics grows
increasingly important, from self-driving cars to security to
sports intelligence, and the need for human insight in the
data collection and analysis process is diminishing as deep
neural nets and object detectors grow increasingly sophis-
ticated. There already exist systems that can answer “how
many cars turned right at a given intersection” [5] or “give
me all shots of Hermione between Harry and Ron” [3], but
it is incredibly difficult to spin up these systems and for-
mat a proper query without understanding these system’s
internals. As the authors of VIVA [7] point out, the video
database literature still lacks an end-to-end practical video
analytics system. Video database systems have yet to define
a model that decouples the language of querying data from
a deep knowledge of how the system internals work.

1.2. Contribution

We propose the Abstract Frame Query Language
(AFQL), an end-to-end database system. AFQL contributes
the following to the video database field:

• We build AFQLite, a python package and CLI (like
SQLite) with video display capabilities for users to do
fast analytics.

• We abstract FrameQL to allow users to specify custom
object detection models by passing in the weights for
the model.

• We outline the full AFQL architecture - an end-to-end
system that takes in SQL-like queries and outputs ob-
ject detection tuples

2. Related Work

2.1. Multimedia Query Languages

In the 2000’s, multimedia query languages (MQLs) gen-
erated considerable interest in the database systems domain
Multimedia languages allow users to query not just data but
“media,” such as images, videos, etc. with syntax that is
tailored to specify requirements on media’s unique spatial-
temporal features (e.g. finding all videos with a horse to the
left of a man in a given time period). However, since video
data had to be preprocessed, interest mostly faded due to the
high human labor involved and the low accuracy of current
computational methods.

In recent years, fast object-detection ML models have
emerged, allowing for online querying and reigniting the
interest in the field of video database systems. Despite
this, various video database systems each possess their own
unique query language, and understanding how to properly
query the database often requires a non-trivial knowledge
of the system’s backend deep learning models. Data an-
alysts are often familiar with SQL and could query video
using the same principles instead of having to learn the in-
tricacies of a object detection based backend. SVQL is an
unimplemented query language proposed to meet this need,
featuring a SQL-like syntax [8]. SVQL identified that spa-
tiotemporal aspects are a key differentiator in video data
from standard SQL data or even image data and built these
aspects into the grammar. A unified query language simi-
lar to SVQL that could work with various different backend
models in several different environments would be highly
beneficial not just for reproducing research results but also
in commercial use cases.
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2.2. Object Detection Algorithms

In the past decade, advances in machine learning models,
particularly deep learning, have proved so highly effective
in the field of object detection (and thereby video database
systems) that these models have rendered prior methods
nearly obsolete. Two model architectures are widely used
in the literature - YOLO [10] and Faster R-CNN [4]. While
Faster R-CNN is slightly more accurate in terms of bound-
ing boxes, especially for small objects, YOLO is faster
at inference time: Depending on hardware architecture,
YOLOv5 runs at rates of 60 FPS, while YOLOv7 has been
shown to achieve speeds of 150 FPS. Despite these impres-
sive speeds, it is still cost-prohibitive to process every frame
on GPU even once for many datasets - let alone processing
every frame per query. For instance, if one hour of GPU
compute time costs 3 dollars, and we process 500 24-hr traf-
fic cameras footage at 30 FPS over a month with YOLOv5
at 60 FPS, then our expenditure is 540,000 dollars.

While processing at query time naively without opti-
mization is cost infeasible, a system that makes a single
cheap pass over every frame is still attractive. Every year,
the cost of hardware decreases and the efficiency of deep
learning models increases rapidly. Furthermore, Neural
Magic has released quantized versions of YOLO [9] that
run on CPU and achieve similar accuracy to baseline YOLO
while maintaining 60 FPS runtime. At the moment, the
cost of CPU compute time is, on average, 1/100 the cost
of compute time on a GPU. These CPU-performant mod-
els will play an important role in the preprocessing of video
database systems due to the cost benefit.

2.3. End-to-end Video Database Systems

While integrating Deep Neural Nets (DNNs) into video
analytics and video databases systems is a relatively new
concept, the field has been rapidly growing since the first
major system, NoScope [6]. OTIF [2] and MIRIS [1], two
recent works, represent opposite ends of the spectrum for
the key question of when processing is done with an ob-
ject detection net. OTIF opts to preprocess the entire video
while tuning frame rate and resolution such that the object
detector is not used at query time (double check this). On
the other hand, MIRIS processes video only at query time
using a very accelerated frame rate and only ”slows down”
to process frames at a finer grain when it detects objects
moving quickly. In this respect, MIRIS is more similar
to BlazeIt, a late materialization system that followed No-
Scope [5]. BlazeIt preprocesses video with cheap neural
nets that act as filters and can run at 100,000 FPS; the sys-
tem then applies a more specialized detector only on frames
of interest according to the outputs of the preprocessing.

Apart from BlazeIt’s contribution toward backend opti-
mizations, the authors developed a frontend query language
known as FrameQL. FrameQL implements many of the

concepts from its predecessors, such as SVQL and MOQL
(is this the right abbreviation), focusing on simplifying ag-
gregations (e.g. counting the number of cars in a frame).
FrameQL also enables a user to specify the error rate and
confidence of the model’s materialized results. However,
FrameQL is not abstract enough in that users are either com-
pletely dependent on BlazeIt’s built-in models and detec-
tors - or users must understand the BlazeIt’s backend well-
enough to dig in and replace these models with their own.
Furthermore, FrameQL lacks some of the spatiotemporal
operators specified in SVQL.

In summation, while video database systems have made
great strides, they face two key weaknesses:

• Video database systems do not have a unified query
language, forcing the user to understand much of the
implementation details about the backend - although
FrameQL is close.

• Most importantly, there is no way in existing systems
or languages to specify custom object detection/neural
net models, which hamstrings advanced users who
may possess fine-tuned and better-performing models
in a given domain.

3. System Goals

The most important aspects of our system were user-
friendliness and accessibility. We wanted to make sure that
users without domain-specific knowledge in the area could
still use it to run queries on videos. We also aimed to lever-
age approaches from existing systems to deliver good per-
formance to the users. Finally, we wanted to allow experts
in the area of object detection to leverage their custom-
tuned models for video querying by plugging them into our
system.

4. System Design

Our video database engine (called AFQLite) is an end-
to-end system that allows users to perform structured
queries, expressed in AFQL, on videos. The users can inter-
act with the system through a command-line interface (CLI)
or a Python interface. AFQLite follows a relational model
in which each object detection is treated as a row in a rela-
tional table.

The high-level workflow in AFQLite goes as follows: the
user first loads a video into AFQLite. The video then gets
preprocessed with a lightweight object detector, and the de-
tections get stored in the cache. When a user performs a
query, the query plan scans the detections from the cache.
Then it performs other structured query operations like fil-
tering, joins, etc., including running the heavyweight object
detector to increase the confidence of the results.
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Each of the 4 main subsystems of AFQLite (User In-
terface, Caching, Query Plan Execution, and Detection) is
described in its own subsection below.

4.1. User Interface

Users can import AFQLite as a Python package or use it
through its CLI. The CLI is more convenient as it doesn’t
require writing any code (except for the queries), but the
Python interface allows for more customization. The CLI is
implemented as a wrapper around the Python interface that
can be run as a standalone executable.

The Python package contains an AFQLite class, which
is the global database instance for all AFQLite data. It sup-
ports adding custom detectors, loading videos, importing
and exporting various caches, and most importantly running
queries.

When the user loads a video, AFQLite will use a
lightweight detector to preprocess all of the frames in the
video and store the detections in the corresponding cache.
The user can specify a custom lightweight detector to use
for preprocessing, as well as a heavyweight detector. They
can also import the cache directly if they had already run
preprocessing on this video before. More on importing
caches is at the end of the next subsection.

AFQLite displays the results of a query in a table format,
but it also supports creating a video from the frames so that
the users can visualize the results.

4.2. Caching

While detectors and videos are independent of each
other, there exists exactly one cache for each (detector,
video) pair. That allows detectors to only process each
frame once, and store the detection results, which can then
be reused next time. That allows us to bring the number of
detector invocations (a bottleneck in the system) to a mini-
mum.

Caches use a key-value store underneath, where the key
is a tuple of the frame timestamp and object class. That
allows efficient lookup by detectors, as well as guarantees a
particular order during the scan. Specifically, the detections
that share those two properties are going to be emitted in
order, which is important for the part of the query plan that
invokes a detector during execution.

Each video will have default lightweight and heavy-
weight caches. These correspond to the lightweight and
heavyweight detectors for the video, which default to built-
in detectors but can be manually specified as explained
above. They are used in scans, described in the next sec-
tion.

When importing a cache for a (detector, video) pair, the
imported detections will be merged into the existing cache
for the specified detector and video. If there’s an overlap,
the imported detections will replace existing detections in

the cache. We chose this approach to give the user more
flexibility, but they do need to be careful not to pollute their
data.

4.3. Query Plan Execution

In AFQLite, the AFQL query is converted 1 to an inter-
mediate representation, also called the query plan, which
closely resembles a query plan for a relational database. Its
only unique components are the Scan and DetectorFilter op-
erations. Scan produces object detection tuples using the
default light and heavyweight caches for the video. Detec-
torFilter runs the heavyweight (or custom) detector for any
tuples that do not reach the confidence threshold, specified
in the query. It then tries to match the detections from the
detector with tuples coming from the nested query plan and
replaces them in the final result2.

4.4. Detection

We use the same detector architecture for built-in and
custom object detectors. That makes it easier for the users
to add custom detectors and choose default lightweight and
heavyweight detectors for a video. Currently, detectors
are loaded using Pytorch’s load method, but in the fu-
ture, we’d want to support users supplying custom detectors
through an interface contract.

Each detector has a corresponding cache that stores its
detections. When a query plan wants to run a detector on a
frame, it first goes through a caching layer (CachedDetec-
tor) that checks if the results are available in the cache, and
returns those. Otherwise, it runs the detector and stores the
results in the cache before returning them to the query plan
executor.

The built-in lightweight and heavyweight detectors are
quantized pruned YOLOv5s3 and YOLOv5s-base, respec-
tively. The former runs using the DeepSparse engine, which
achieves extremely high performance on a CPU while sac-
rificing some of the accuracy. We explore the performance
of both in more detail in the Experiment section. For the lat-
ter, we considered both YOLO and Faster R-CNN. We ul-
timately chose YOLO as we did not want to sacrifice more
speed than we already have. However, further evaluation
would be required to find the optimal point on the speed-
accuracy tradeoff curve. The ability to plug in custom de-
tectors also lets users decide how much accuracy they want.

1We have not implemented the conversion yet. However, our query
plan resembles the structure of AFQL closely so this is only a matter of
implementation.

2This is another part we did not have time to implement. The matching
process turns out to be very complex due to the number of unique scenarios
like filtering and false positives and negatives.

3we got this to run independently but weren’t able to integrate it into
our system yet due to the interface discrepancy. We do not see this as a
design challenge, it just wasn’t implemented
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5. Evaluation
We evaluate our system directly on our goals. While the

accessibility and detector flexibility can only be evaluated
qualitatively, we also provide a quantitative evaluation of
the accuracy and performance of our approach.

5.1. Qualitative goals

Our system’s intuitive and SQLite-like interface is very
user-friendly in general. We paid special attention to mak-
ing the CLI simple and made error messages expressive.
The ability to display results of a query in a video further
reduces the friction for users and lets them iterate on their
queries much more quickly. On the other hand, we believe
that the combination of caching and the unpredictable na-
ture of object detection models could lead to some confu-
sion in query results. We tried to mitigate that by giving
the user a lot of control over the data in the system, but it
could still be improved further. Our current implementation
of detectors is not completely flexible, as we currently just
load weights from a file using PyTorch. That means that
users could load their fine-tuned own detectors, but only if
they’re in the same format as YOLO. Nevertheless, our ar-
chitecture is designed in a way that makes this feature easy
to add.

5.2. Datasets

As we began the project, we considered a variety of dif-
ferent datasets. Many pre-labelled video sets are traffic
camera footage, which do not provide the variety of objects
that necessitate a complete query language like AFQL. We
also considered the ImageNet VID dataset, which contains
a wide variety of objects, but each video clip is around 5
seconds long and tends to focus on only one object, mean-
ing the video has little motion and few objects in the same
frame; again, one of the purposes of AFQL is to make
querying motion and variety of objects easier. We decided
to create our own corpus to suit our needs, but due to the
time constraints - particularly of decoding large quantities
of video - our corpus is somewhat shorter than we liked,
consisting of 4 videos: a scene from the movie Baby Driver,
handheld footage of zoo animals, Lionel Messi soccer high-
lights, and a dog agility tournament.

Each video contains more than 5 unique objects and con-
tains a great deal of motion. The videos possess unique
qualities that test the resilience of our object detection algo-
rithm: Baby Driver features shots from a variety of angles,
the zoo video (while markedly shorter) features a moving
camera with lower resolution, the soccer video deals with
small objects (due to an aerial view), and the dog agility
video has banners of text that often obscure part of the ob-
jects in the video.

A note of interest is that our preprocessing algorithm
considers all frames in the corpus. In contrast, most pre-

vious works devise an intelligent algorithm to skip many
frames; for instance, MIRIS processes on average 1 frame
per second, while we process 30 frames per second. This
means that while we consider around 25 minutes of video,
we generate as many frames as similar works considering
750 minutes of video.

5.3. Experiment

5.3.1 Comparing Quantized Pruned YOLO Model to
YOLO Base

In our system, we preprocess all frames of the corpus
with Neural Magic’s YOLOv5s Pruned Quantized model
on CPU. According to Neural Magic [9], their model has
very nearly similar accuracy performance to the YOLOv5s
baseline on the COCO dataset; on input batch size of 64,
the pruned quantized model can process 410 items/sec on
CPU, while YOLOv5s Base processes 94 items/sec.

Figure 1. YOLOV5s quantized pruned results

The first step of the experiment is to evaluate the per-
formance of quantized pruned YOLOv5s on every single
frame since quantized pruned YOLOv5s will do this during
preprocessing. Using the results of YOLOV5s Base as our
ground truth, we measure the average IOU of the YOLOV5s
quantized pruned model at confidence 50.

Our own results processing every frame in our video cor-
pus are shown in the following figure. The quantized video
model does very poorly on the soccer video, which suggests
it is not as robust to small object detection as the base model
(small object detection is a known weakness of YOLO mod-
els). Aside from this, the quantized model produces very
similar results to the base (while running on a CPU at ap-
proximately 1/100 the cost).

Pruned Quantized Yolo IOU@50
Video IOU@50
Baby Driver Scene (6
min)

0.713

Zoo Handheld (10
sec)

0.963

Messi Soccer Vid (6
min)

0.257

Dog Agility Vid (12
min)

0.681
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5.3.2 Performance on Example Queries

In the second phase of the experiment, we measure the per-
formance of the AFQL architecture on accuracy and speed
against a system that processes every frame of the corpus
with YOLOv5s base; for each query, we define accuracy as
the percent of true objects specified by the query returned
by AFQL, and we define speed as the percent of frames in
the video that AFQL heavyweight processed. As NoScope
points out, in an architecture with cheap preprocessing first
and a heavyweight detector for the second pass, a low false
negative rate is highly desirable, since the heavyweight de-
tector can always check false positives and discard them. In
the AFQL architecture, false positives directly lead to a de-
crease in speed, while false negatives of course lead to less
accuracy.

For Query 1, we select frames with a certain object of in-
terest. For Baby Driver, Zoo, Messi soccer, and dog agility
videos - we select for cars, zebras, sports (soccer) ball, and
dogs.

Select * From Video Where Class=Object
Query 1

Video Accuracy Speed
Baby Driver
Scene

0.34 0.03

Zoo Handheld 0.98 0.45
Messi Soccer
Vid

0.8 0.04

Dog Agility
Vid

0.81 0.06

For Query 2, we test AFQL’s spatiotemporal capabilities
by executing a query that returns frames in which one object
is detected as left of the other object - herein defined as
the xmax coordinate of the first object being less than the
xmin coordinate of the second object. For Baby Driver, we
choose two cars; for Zoo Handheld, we choose a zebra left
of a giraffe; for Messi Soccer Vid, we choose person left of
ball; for Dog Agility vid, we choose dog left of person.

Select * From Video Where Obj1.bbxmax <
Obj2.bbxmin

Query 2
Video Accuracy Speed
Baby Driver
Scene

0.18 0.002

Zoo Handheld 0.625 0.017
Messi Soccer
Vid

0.804 0.02

Dog Agility
Vid

0.94 0.02

These results demonstrate that while quantized
YOLOv5s speeds up the runtime of a query, it is not

as accurate as YOLOv5s base. In Query 2, we see that the
likelihood of error has a multiplicative effect: Baby Driver
and Dog Agility suffer in particular because quantized
YOLO often mistakenly marks dogs as cats and cars as
trucks. In the AFQL architecture, the heavyweight detector
will ignore these frames in the second pass - thus boosting
speed beyond the true value. While running a lightweight
detector on CPU is promising, future approaches may
benefit from finetuning the model or quantization-aware
training on datasets in the domain.

6. Limitations and Future Work
Bounding boxes could change after the detector replaces

the results. That means that some predicates could now
have a different value. We could mitigate by allowing users
to choose one of three modes:

• default: bounding boxes are just replaced. This is the
fastest way but the results could not satisfy the predi-
cate in the query.

• strict: the filter is re-run after bounding boxes are
replaced to eliminate detections that don’t fulfill the
predicate anymore. This takes some extra work but
eliminates false positives. However, it does not help
with false negatives.

• accurate: any filtering involving bounding boxes is
only done after detection. This is a lot more compu-
tationally expensive as more detections have to be run,
but it is the most accurate.

There are two more issues our system does not really
solve directly. First, if the lightweight detector does not
support a class, then that detection will never make it to the
custom detector to check, even if that one does support it.
This could potentially be solved by adding support for sub-
classes. Second, if preprocessing produces a false negative,
the heavyweight detector again cannot help in recovering
that detection. We could make our system more robust by
using a model with fewer false negatives for preprocessing.

We do not consider these issues too detrimental, as a user
could always plug in a custom model for any stage to elim-
inate them completely.

Next Steps. AFQL was built to be as abstract and exten-
sible as possible. We have several future works on which to
focus, but believe they should mesh with the existing sys-
tem. The foremost goal is to implement the AFQL to spec-
ify queries. The next goal would be to abstract the detec-
tor class even further to support custom implementations of
models. Once these steps are accomplished, we can publish
AFQLite as a Python package. Further downstream tasks
include query optimizations based on tuples in the prepro-
cessing cache, training additional built-in detectors for spe-
cific domains, and integrating object track algorithms both
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to aid with cache replacement and to perform motion-based
queries..
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