
Weakly Supervised Instance Segmentation

Kevin Awoufack
awoufack@mit.edu

Arman Dave
armdave@mit.edu

Abstract

Instance segmentation is a common and increasingly
necessary task in the field of computer vision but is also
considered to be long and arduous since it requires precise
human input to generate segmentations. While supervised
methods to annotate new images do exist, they require a
large pre-labeled dataset, which is a luxury the medical field
does not often have. We propose a weakly supervised seg-
mentation model to create instance segmentations of Com-
mon Objects in Context. It will use a limited set of annotated
images to improve the self-supervised FreeSOLO model.

1. Introduction

Instance segmentation seeks to create annotated image
masks where objects of the same class can each be iden-
tified, as opposed to semantic segmentation that masks all
objects of the same class together. However, both methods,
like any supervised learning model, require large amounts
of annotated data. This is a painstakingly long process
where people must decide the pixel level boundaries of var-
ious objects in an image in order to create a rich and diverse
database. Many are forced to use large generic annotated
databases, such as MS COCO [7], as the base of their mod-
els, even though these databases are not perfectly extensive.
This holds especially true in the fields such as medicine and
education, where access to images and other data is already
sparse due to laws impeding collection or public access to
such information.

A weakly supervised learning model is thus proposed as
a way to create new annotations for images, specifically in
the medical domain. The term “weakly supervised” im-
plies a model that uses imprecise or sparsely labeled data
and is resilient to noise in its dataset. We hope to adapt
the FreeSOLO model [11], a self-supervised learning algo-
rithm, into a weakly supervised version by injecting a few
labeled data points at the mask generation step, which is
then compared to the model’s output to learn the features of
just data. Rather than just fine tune the self learned model
with annotations, we seek to use these annotations as part
of the learning process.

We had originally hoped to work with the PanNuke
dataset [3], which contains nuclei instance segmentation
and classification dataset across 19 different tissue types,
as in our original proposal. For the sake of data format-
ting and compatibility we decided to use the COCO dataset
as it’s widely used and encompasses many different types
of objects with labeled segmentations. The idea of using a
limited set of annotated points is agnostic to the dataset (al-
though datasets of niche subjects yield interest specifically
for their small scope).

2. Related Work

2.1. Instance Segmentation

Instance segmentation is an incredibly common task in
computer vision yet remains challenging due to the arbi-
trary number of instances. Most approaches are either top
down (starting with detectors and working down to pixel
level) or bottom up (grouping the pixels into an arbitrary
number of objects). Mask R-CNN [4] is an example of the
former, which extends Faster R-CNN by adding a branch
to predict the object mask in parallel to the task of creat-
ing a bounding box. A more recent adaptation of similar
methods is BoxInst [9], which the segmentations from the
bounding box annotation by introducing projection loss and
pairwise loss terms to the CondInst model [8]. By contract,
a bottom up method such as [2] uses a loss function that
encourages the network to push away to a further point in
feature space the pixels belonging to different instances and
pull closer in feature space the pixels in the same instance.
SOLO [10] introduces the notion of “instance categories”,
a combination of approximating the location of the object
center of an instance and determining the size through a
feature pyramid network, converting instance segmentation
into a single-shot classification-solvable problem.

2.2. Weakly Supervised Learning

In supervised learning, each pixel is given a unique class
as a label. However, in weakly supervised learning, a
dataset consists of images and labels or annotations asso-
ciated with each image, as opposed to a pixel-level corre-
spondence. This partially solves the problem of the high
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cost of pixel-level labeled data by allowing weakly super-
vised models to use large-scale datasets such as ImageNet.

One option is to use data labelled with bounding boxes,
but bounding boxes can still be costly to obtain. Constraints
can be further relaxed by using image-level class labels.
These image-level class labels are often used to derive Class
Attention Maps (CAMs), which estimate the areas of each
class in an image. Yet, even CAMs suffer from several is-
sues - most prominent of which is that CAMs cannot distin-
guish different instances of the same class.

Latest state of the art, such as IRNet [5], overcome the
issues of CAM by using two additional pieces of data: a
class-agnostic instance map and pairwise semantic affini-
ties. By combining the instance-agnostic CAMs with
the class-agnostic instance map, IRNet gets instance-wise
CAMs. The data from pairwise semantic affinities is used to
propagate attention scores in the areas around instance wise
CAMs, and thus generate a pseudo instance segmentation
label. IRNet significantly outperformed previous efforts on
the PASCAL VOC 2012, a standard dataset for weakly su-
pervised models.

2.3. Unsupervised Segmentation

The model FreeSOLO [11] is the current state of the art
for unsupervised segmentation - FreeSOLO achieves 9.8%
AP50 without using any sort of annotated data during train-
ing. FreeSOLO is built on top of the simple SOLO archi-
tecture, with its novelty coming from the Free Mask part
of its architecture (which we describe in greater detail in
Proposed Methods). FreeSOLO uses Free Mask to generate
coarse masks and feeds the masks as inputs to the regular
SOLO model for segmentation.

2.4. Contrastive Loss

Contrastive loss has become popular in the spheres of
unsupervised and self supervised learning. Clusters of data
points belonging to the same class are pulled closer to-
gether in latent embedded space, while pushing away those
of other classes. SimCLR [1] is one such paper that im-
proved self-supervised and semi-supervised accuracy by in-
creasing the number of parameter, in particular the batch
size, and employing data augmentation to images. It’s in-
teresting because SimCLR found significantly better results
with extremely large batch sizes and longer training peri-
ods, compared to conventionally trained supervised models
that do well with few parameters. Contrastive loss also has
benefits in supervised contexts. SupCon [6] explores how
the use of labels can boost top-1 accuracies. In a supervised
context it is possible to leverage the entire class as positives
rather than just a single data point at a time as in most self
supervised approaches. Thus, embedding are pushed closer
together. In this paper we use contrastive loss as proposed
by SimCLR.

Figure 1. TODO: caption

3. Method
3.1. Background

We propose an adaptation of the FreeSOLO [11] network
for the medical field that trains only on tissue to detect and
segment instances of cancer nuclei. The visual fields are
extremely similar so we inject a small sample of annotated
data points.

We would train the Free Mask network, which uses a
pretrained convolutional model like ResNet to generate a
coarse segmentation map. This backbone network is used
to construct queries Q and keys K. The keys are convolved
by the queries by taking their cosine similarity. Their con-
volution is denoted S = Q ⊛ K, where S is the score map. It
generates N = H’ × W’ queries, where H’ and W’ denote the
down sampled spatial size, which are normalized, scored by
maskness as defined in the paper [11], and then filtered for
redundancies.

3.2. Weakly Supervised Contrastive Loss

After Free Mask has run on input data, for the small set
of annotated training data within the set, the embedding of
the highest scoring masks obtained is used to calculate the
contrastive loss from the ground truth annotation. Distance
can be computed through the cosine similarity of a vector-
ized bit mask, or more simply the intersection over union
(IoU) of the polygon mask. We choose to implement the
latter. The goal of contrastive loss is to discriminate the fea-
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tures of the input vectors, so the better masks are as close
to the ground truth as possible. The contrastive loss func-
tion [1] is

Li,j = −log
exp(sim(zi, zj)/τ)∑2N

k=0 1[k ̸=i]exp(sim(zi, zk)/τ)

where z j/z k is the embedding for 2N possible annota-
tions, z i is the embedding of a generated mask, and τ is a
temperature normalization factor. There are 2N annotations
compared against because contrast loss finds the distance
from both predicted and labeled data to enable the push-pull
of clusters in embedded space. The distance metric sim is
defined as the cosine similarity between two vectors. It’s
important to note that as in SimCLR we’re implementing
as a modified version of cross-entropy loss because it’s not
a clear binary classification, more so calculating the likeli-
hood two masks are the same instance. The closer the masks
are in embedding, the lower the loss (-log(1) = 0). This loss
function will be used to further train the backbone model of
Free Mask to obtain better coarse masks that are then fed
into the SOLOv2 model.

4. Experiment
4.1. Settings

Implementation. We largely implemented the parame-
ter so FreeSOLO as was defined in the paper. However, for
every generated mask in the first training pass through, we
find the closest matching ground truth mask from the anno-
tated data using the IoU as the distance metric. This chosen
labeled mask is then encoded and saved to the COCO style
database built by Free Mask as input to SOLOv2. Once
the first loop is complete the backbone model of Detectron2
is extracted from the cfg file. FreeSOLO uses pretrained
ResNet50 model but because we don’t want a softmax clas-
sification we extract the res5 layer. The output of the layer,
a tensor of (batch size, 2048, 4, 4), is vectorized as the em-
bedding used in our contrastive loss functions. Resnet re-
quires a three channel input and the contrastive loss func-
tion requires that batches have a uniform number of masks
in each input. To overcome this we set the batch size as
twice the most number of polygons in one segmentation and
repeat data points along the missing dimension. We choose
this approach because the contrastive loss function benefits
from larger batch sizes but we are limited in the amount of
data available by nature of the problem.

We set a temperature of τ = 0.5 for our the contrastive
loss function, as SimCLR does in their paper. Smaller tem-
perature values generally have higher benefit than large hav-
ing large ones but temperature values that are too low be-
come statistically unstable and lose meaning as loss val-
ues blow up. The most important parameters for training

the backbone model were the batch size and learning rate,
which were 8 and 0.005. The former was limited by the
computational power of our GPU but ideally would be 32
so as to learn the most features within a batch. The latter
was an experimental parameter based on the fact that the
pretrained weights already produced a model with very low
loss so large changes in the learning rate caused the model
to deviate from the local minima. There was little benefit
from longer training epochs as well.

Datasets. FreeSOLO expects COCO annotated data as
input and in its original implementation used the COCO
train2017 and COCO unlabeled2017 as the set of unla-
beled images, which exceeds 200k images. We only use the
COCO train2017 dataset to save time, save our limited com-
putational resources, and replicate an environment where
there is a limited amount of labeled instance segmentation
data. Since FreeSOLO is a two-tiered architecture (Free
Mask and self-supervised SOLO), we approach our data in
similar manner: Within the Free Mask training loop, Free
Mask builds coarse masks from the train2017 dataset and
then randomly splits them into train and test sets. There is
never more than 50% of the coarse masks in the training
dataset to avoid becoming a supervised learning problem.

Next, we use these coarse masks as input for SOLO to
train on the COCO Val2017 dataset. Since we did not have
powerful enough GPUs to train on the entire 5000 image set
(the model would take over 24 hours to run), we randomly
partitioned a sample of 500 images. We use a random parti-
tion of 500 of the remaining 4500 for the evaluation dataset.

4.2. Evaluation

We first used Free Mask to generate coarse masks,
achieving a loss of 0.013525506. Here are some photos,
alongside the masks they generated:

Figure 2. Image1
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Figure 3. Image1Mask

Figure 4. Image2

For masks, we saw two common themes: Either the
mask would cover the entire image, as seen in Image2, or

Figure 5. Image2Mask

the mask would pick up on objects in the left corner, as
see in Image1. The first case is pretty intuitive in that Free
Mask was only able to learn the entirety of the image. The
second case is not as intuitive, but we suspect it may have
to do with iteration of the image beginning on the left and
proceeding column by column. As such, Free Mask would
learn the left-hand-side of images better.

Next, we ran a baseline model without injecting our
masks. Unfortunately, due to physical machine constraints,
we were unable to run our model for the required time to
reproduce or beat FreeSOLO’s results. As is standard in in-
stance segmentation, we use AP and AR metrics, combined
with the IoU theshold. Given that tp is true positive, fp is
false positive, and fn is false negative, average precision is
defined as

precision =
tp

tp+ fp
,

and average recall is defined as

precision =
tp

tp+ fn
.
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The intersection over union (IoU) is defined as

IoU =
Area of Overlap
Area of Union

APx and ARx are then defined as their respective mea-
sures with the IoU threshold set as x. We now present our
baseline and mask-injected results on AP and AR metrics:

Figure 6. Baseline Segmentation Results

Figure 7. Baseline Bbox Results

In the given time, it appears that our model was only
able to get to the point where it learned to capture the entire
image as an object. We give the following example images:

Figure 8. BaselineSeg1

Figure 9. BaselineSeg2

Our next step was to inject our earlier masks into the
training process. Unlike our baseline model, which seemed
to get trapped in a local minima very quickly (loss at 2), the
mask-injected training appeared to start off at a very high

loss and consistently improved till we got loss of 0.4. We
achieved the following results:

Figure 10. Baseline Segmentation Results

Figure 11. Baseline Bbox Results

Our mask-injected model performed about the same as
our baseline model, which is not surprising, given the spar-
sity of data on which we train. The results of the model
suggest that the dense feature maps of Free Mask’s back-
bone could not minimize the pairwise similarity loss of lo-
cal features when running the ResNet50 model. Essentially
all pixels are being treated as similar even if they are phys-
ically far in the image or embedded space. One thing to
note is that FreeSOLO got a 12% AP score, but used both
the COCO train2017 and COCO unlabeled2017 datasets as
input. Another point of consideration for where our model
may have failed is in training the pretrain backbone model.
One reason for low AP scores was that we were training on
too few data points. The low contrastive loss that hardly
fluctuated may have been an indication that the model was
overfitting the masks in embedded space. This is simply an
inherent problem of machine learning and having too lit-
tle data for a powerful model without properly set regular-
ization metrics. Another point of issue was that the masks
the training loop was fed was bad data. As we can see by
the fact that most masks simply covered the image, which
would produce very similar embeddings in feature space
and low loss.

5. Conclusion
Based on FreeSOLO, our paper has thus introduced how

it could be possible to create new annotations from a dataset
that is largely unlabeled. While we did not achieve re-
sults that surpassed FreeSOLO, it raises interesting ques-
tions about what work can be done to improve unsupervised
models within a reasonable scale at the level of commodity
machines. The process of generating an annotated dataset
from raw images remains a largely human intensive task.

Limitations. The primary limitation of our implemen-
tation of the project is the computational resources. There
are two views: theoretical and practical. On a theoretical
level, most unsupervised and self supervised models benefit
greatly from large batch sizes and many epochs of train-
ing, as in SimCLR. The same can be said about FreeSOLO.
They used about 200k images between COCO train2017

5



and COCO unlabeled2017 datasets, trained for 300,000
epochs, and had batch sizes of 32 images. In the span and
scope of our physical resources, it was not possible to im-
plement a fully trained weakly supervised on Google Colab
where there is at most one GPU available and training can
be interrupted, whereas FreeSOLO ran on V100 GPU and
used a pretrained backbone model without further training
it. On our setup simply processing 500 images for 30,000
epochs would take well over 24 hours.

Some limitations came from of choice of FreeSOLO as
our base model. The Free Mask portion that generates the
coarse masks does so through unsupervised object discov-
ery using the features found by the backbone model. This
introduces inconsistency into the design of FreeSOLO as
a whole because there is no guarantee that the same ob-
ject and boundaries will be found between iterations of Free
Mask, if any are found at all. At times not even 20 coarse
masks could be generated and most of the time they were
not useful masks. Without sufficient training data, it wasn’t
possible to train the backbone model, even in the context of
weakly supervised training. Thus, there were many itera-
tions simply trying to simply get enough annotations out of
Free Mask. FreeSOLO in general is also a very recent pa-
per that was published in the past few months, so not all its
viewable code was completely up-to-date, which required
us to spend a large chunk of our preliminary time getting
the base model running.

Next Steps. A reasonable next step would be to train our
model on a more powerful GPU cluster to accurately repli-
cate the training environment of FreeSOLO. Once there are
more concrete results, there are two approaches we propose
to improve the coarse mask generation abilities. The first
would be to introduce a bottom up pixel-wise recognition
step. While FreeSOLO is interesting in the fact that it’s a
class agnostic approach, it also means that it requires in-
tensive training to find meaningful features and, as many
of our results show from masks that cover the entire im-
age, pixels may not be properly contextualized as objects.
While such a suggestion would sacrifice the class agnostic
property of FreeSOLO, there exist many pretrained models
which can then be contrasted with negative space as an in-
direct form of localization. The second course of improve-
ment would be to introduce some form of attention into the
model. Each image is currently processed individually into
its queries and keys. Thus no learning occurs when coarse
masks are generated.

6. Individual Contributions
I was primarily responsible for much of the implemen-

tation details. This included figuring out how the COCO
dataset was formatted and how to use the API to stream
chunks of data. I also had to effectively partition the data in
order to work with manageable chunks given that COCO is

20 GB. When it came to running the model, I overcame
several hurdles: The primary hurdle that took nearly 12
hours to overcome was tracing the root source of a seg-
mentation fault. Since seg faults do not report tracebacks,
and the model is asynchronous, this was an exhaustive pro-
cess to trace the root of the problem to shape errors in the
tensors. I further overcame an error where FreeSOLO ap-
peared to modify tensors in-place during the backpropaga-
tion process, which is illegal. It appears that the authors
of FreeSOLO fixed this in their implementation of SOLO
(the model they wrote upon which FreeSOLO is based), but
did not push these changes to the files of SOLO they in-
cluded with FreeSOLO. When we ran the model, I oversaw
the self-supervised SOLO process of the model, which in-
cluded sanity checks on our results and tracking the loss.
Overall, it required a lot of attention to detail and under-
standing the architecture of FreeSOLO to a high extent in
order to get the model to run given our limited compute re-
sources.
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